منابع مشابه
Towards Semi-supervised Manifold Learning: UKR with Structural Hints
We explore generic mechanisms to introduce structural hints into the method of Unsupervised Kernel Regression (UKR) in order to learn representations of data sequences in a semi-supervised way. These new extensions are targeted at representing a dextrous manipulation task. We thus evaluate the effectiveness of the proposed mechanisms on appropriate toy data that mimic the characteristics of the...
متن کاملTowards Safe Semi-Supervised Learning for Multivariate Performance Measures
Semi-supervised learning (SSL) is an important research problem in machine learning. While it is usually expected that the use of unlabeled data can improve performance, in many cases SSL is outperformed by supervised learning using only labeled data. To this end, the construction of a performance-safe SSL method has become a key issue of SSL study. To alleviate this problem, we propose in this...
متن کاملCoupled Semi-Supervised Learning
This thesis argues that successful semi-supervised learning is improved by learning many functions at once in a coupled manner. Given knowledge about constraints between functions to be learned (e.g., f1(x) → ¬f2(x)), forcing the models that are learned to obey these constraints can yield a more constrained, and therefore easier, set of learning problems. We apply these ideas to bootstrap learn...
متن کاملSemi-supervised Learning
Semi-supervised learning uses both labeled and unlabeled data to perform an otherwise supervised learning or unsupervised learning task. In the former case, there is a distinction between inductive semi-supervised learning and transductive learning. In inductive semi-supervised learning, the learner has both labeled training data {(xi, yi)}i=1 iid ∼ p(x, y) and unlabeled training data {xi} i=l+...
متن کاملSemi-Supervised Learning
For many classification problems, unlabeled training data are inexpensive and readily available, whereas labeling training data imposes costs. Semi-supervised classification algorithms aim at utilizing information contained in unlabeled data in addition to the (few) labeled data. Semi-supervised (for an example, see Seeger, 2001) has a long tradition in statistics (Cooper & Freeman, 1970); much...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33014237